377 research outputs found

    Allocating Limited Resources to Protect a Massive Number of Targets using a Game Theoretic Model

    Full text link
    Resource allocation is the process of optimizing the rare resources. In the area of security, how to allocate limited resources to protect a massive number of targets is especially challenging. This paper addresses this resource allocation issue by constructing a game theoretic model. A defender and an attacker are players and the interaction is formulated as a trade-off between protecting targets and consuming resources. The action cost which is a necessary role of consuming resource, is considered in the proposed model. Additionally, a bounded rational behavior model (Quantal Response, QR), which simulates a human attacker of the adversarial nature, is introduced to improve the proposed model. To validate the proposed model, we compare the different utility functions and resource allocation strategies. The comparison results suggest that the proposed resource allocation strategy performs better than others in the perspective of utility and resource effectiveness.Comment: 14 pages, 12 figures, 41 reference

    Self-tuning vibration absorber and the effect of its installation position on damping characteristics

    Get PDF
    A kind of self-tuning vibration absorber is presented. The relationship between the installation position and the vibration damping effect of the self-tuning vibration absorber is established, the influence on the damping effect is discussed. Then, on the vibration test bed, the theoretical analysis results are tested and verified. The results show that, installation position of the self-tuning vibration absorber has a significant influence on its vibration damping effect. When installed near the source location, the self-tuning vibration absorber has a better vibration damping effect. It is should be avoided in the area of vibration deterioration

    ATMSeer: Increasing Transparency and Controllability in Automated Machine Learning

    Full text link
    To relieve the pain of manually selecting machine learning algorithms and tuning hyperparameters, automated machine learning (AutoML) methods have been developed to automatically search for good models. Due to the huge model search space, it is impossible to try all models. Users tend to distrust automatic results and increase the search budget as much as they can, thereby undermining the efficiency of AutoML. To address these issues, we design and implement ATMSeer, an interactive visualization tool that supports users in refining the search space of AutoML and analyzing the results. To guide the design of ATMSeer, we derive a workflow of using AutoML based on interviews with machine learning experts. A multi-granularity visualization is proposed to enable users to monitor the AutoML process, analyze the searched models, and refine the search space in real time. We demonstrate the utility and usability of ATMSeer through two case studies, expert interviews, and a user study with 13 end users.Comment: Published in the ACM Conference on Human Factors in Computing Systems (CHI), 2019, Glasgow, Scotland U

    Multiobjective imperialist competitive algorithm for solving nonlinear constrained optimization problems

    Get PDF
    Nonlinear constrained optimization problem (NCOP) has been arisen in a diverse range of sciences such as portfolio, economic management, airspace engineering and intelligence system etc. In this paper, a new multiobjective imperialist competitive algorithm for solving NCOP is proposed. First, we review some existing excellent algorithms for solving NOCP; then, the nonlinear constrained optimization problem is transformed into a biobjective optimization problem. Second, in order to improve the diversity of evolution country swarm, and help the evolution country swarm to approach or land into the feasible region of the search space, three kinds of different methods of colony moving toward their relevant imperialist are given. Thirdly, the new operator for exchanging position of the imperialist and colony is given similar as a recombination operator in genetic algorithm to enrich the exploration and exploitation abilities of the proposed algorithm. Fourth, a local search method is also presented in order to accelerate the convergence speed. At last, the new approach is tested on thirteen well-known NP-hard nonlinear constrained optimization functions, and the experiment evidences suggest that the proposed method is robust, efficient, and generic when solving nonlinear constrained optimization problem. Compared with some other state-of-the-art algorithms, the proposed algorithm has remarkable advantages in terms of the best, mean, and worst objective function value and the standard deviations

    Long Survival after Resection of Small Cell Carcinoma of the Pancreas with Synchronous Adenocarcinoma of the Ampulla of Vater

    Get PDF
    Small cell carcinoma of the pancreas is very rare and the patient usually died within 1 year after diagnosis. We reported an unusual case with small cell neuroendocrine carcinoma of the pancreas and a synchronous moderately differentiated adenocarcinoma of the ampulla of Vater in a 44-year-old male, who was successfully treated with pylorus-preserving pancreaticoduodenectomy and post-operative cisplatin-based chemoradiation therapy. The follow-up data showed no evidence of recurrence and the patient is in a good health condition at 117 months after the surgery
    corecore